22 research outputs found

    Thyroid hormone orchestrates the epithelial carcinogenesis through the NANOG-D2-T3-ZEB1 axis

    Get PDF
    Keratinocyte carcinomas (KCs), also known as non-melanocytic skin cancers (NMSCs), are the most common cutaneous malignancies diagnosed in fair-skinned populations. Molecular, epidemiologic, and clinical studies have led to understanding of the cellular events that occur during skin tumorigenesis and have provided new strategies for treatment and prevention of KCs. Genomic analyses have uncovered high-risk susceptibility genes, and somatic events that underlie common pathways important in KC tumorigenesis. Moreover, an emerging role for the endocrine therapy in the treatment of skin cancer has also been recognized in recent years. In this context, thyroid hormones (THs) are key endocrine regulators, whose action is critical both in physiological and pathological conditions, as in the case of the two most common subtypes of NMSC, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). In the target tissues THs availability is regulated by the concerted actions of the TH-activating and inactivating enzymes, namely type 2 and type 3 deiodinases (D2 and D3), which act as a cell-specific pre-receptor mechanisms to control TH signaling independently of circulating levels of THs. In the last decade, our group provided the evidence of a functional link between TH, its activating/inactivating enzymes, D2 and D3, and cancer formation. In particular, we demonstrated that: i) type 3 deiodinase (D3) enhances the proliferation of normal and malignant keratinocytes (1); ii) in the basal cell carcinoma (BCC) D3 is under the control of sonic hedgehog and is highly expressed in the early phases of tumorigenesis (2); iii) the microRNA-21 up-regulates D3 thereby reducing the TH level in BCC (3); iv) the concerted action of type 2 and type 3 deiodinases regulates the cell cycle and survival of basal cell carcinoma cells (4). While the role of D3 has been investigated in the growth and differentiation of keratinocytes, both in pathological and in cancerous skin contexts, the effective role of TH D2-produced in the cancer progression was never been clarified. In this PhD program, we investigated the functional implication of D2 in KCs, identifying a comprehensive mechanistic insights into the regulation of D2 in cutaneous tumors (4). Elucidating the functional role of THs and tissue-specific modulation of deiodinases in tumorigenesis is crucial for the use of hormonal regulation as a new tool in a therapeutic context

    Deiodinases and Cancer

    Get PDF
    : Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer

    Treatment of Cutaneous Melanoma Harboring SMO p.Gln216Arg Mutation with Imiquimod: An Old Drug with New Results

    Get PDF
    : Melanoma is the most lethal form of skin cancer and its incidence is growing worldwide. In the last ten years, the therapeutic scenario of this disease has been revolutionized by the introduction of targeted therapies and immune-checkpoint inhibitors. However, in patients with many lesions and bulky tumors, in which surgery is no longer feasible, there is a need for new treatment options. Here we report, for the first time to our knowledge, a clinical case where a melanoma patient harboring the SMO p.Gln216Arg mutation has been treated with imiquimod, showing a complete and durable response. To better explain this outstanding response to the treatment, we transfected a melanoma cell line (MeWo) with the SMO p.Gln216Arg mutation in order to evaluate its role in response to the imiquimod treatment. Moreover, to better demonstrate that the antitumor activity of imiquimod was due to its role in suppressing the oncogenic SMO signaling pathway, independently of its immune modulating function, an in vivo experiment has been performed. This clinical case opens up a new scenario for the treatment of melanoma patients identifying a new potentially druggable target

    Loss of p53 activates thyroid hormone via type 2 deiodinase and enhances DNA damage

    Get PDF
    : The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    Selective Inhibition of Genomic and Non-Genomic Effects of Thyroid Hormone Regulates Muscle Cell Differentiation and Metabolic Behavior

    No full text
    Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the β3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells

    Saliva Analysis of pH and Antioxidant Capacity in Adult Obstructive Sleep Apnea Patients

    No full text
    Background: Obstructive sleep apnea syndrome (OSAS) may be associated with and activates the stress response system, and variation in the physiological antioxidant capacity of body fluids. Our aim was to evaluate the variation of pH and antioxidant capacity on the saliva of obstructive sleep apnea subjects (OG) compared to a control group (CG). Method: Fifty subjects with moderate/severe OSAS were recruited in Tor Vergata Hospital and compared with 20 healthy subjects CG. The buffer and the antioxidant capacity of the samples were quantified measuring the pH and the percentage of total salivary antioxidant capacity (%TAC), which refers to the reduced glutathione salivary concentration (GSH). Moreover, the protein concentration and the gelatinolytic activity of metalloproteinases were quantified. Results: The data showed that the pH value is slightly more alkaline in OSAS subjects; however, it is not directly related to the severity of OSAS. The %TAC was found to be significantly reduced by 86.2% in the OG. Proteins of saliva from the OG were found 1.5 times more concentrated than in the healthy sample. The gelatinolytic activity of metalloproteinases of healthy and OSA did not show statistically significant changes. Conclusions: The salivary samples from OSAS compared to CG show an alteration of the oxidative state, the pH buffering power, and protein concentrations, inducing conditions that can easily evolve chronic gingivitis. Further investigations are necessary to evaluate the feasibility of using salivary fluid for the early diagnosis of oral or systemic problems in OSAS subjects

    Thyroid hormone regulates glutamine metabolism and anaplerotic fluxes by inducing mitochondrial glutamate aminotransferase GPT2

    No full text
    : Thyroid hormones (THs) are key metabolic regulators coordinating short- and long-term energy needs. In skeletal muscle, THs modulate energy metabolism in pathophysiological conditions. Indeed, hypo- and hyperthyroidism are leading causes of muscle weakness and strength; however, the metabolic pathways underlying these effects are still poorly understood. Using molecular, biochemical, and isotope-tracing approaches combined with mass spectrometry and denervation experiments, we find that THs regulate glutamine metabolism and anaplerotic fluxes by up-regulating the glutamate pyruvate transaminase 2 (GPT2) gene. In humans, GPT2 autosomal recessive mutations cause a neurological syndrome characterized by intellectual disability, microcephaly, and progressive motor symptoms. Here, we demonstrate a role of the TH/GPT2 axis in skeletal muscle in which it regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. These results describe an anabolic route by which THs rewire glutamine metabolism toward the maintenance of muscle mass

    Thyroid Hormone Receptor Isoforms Alpha and Beta Play Convergent Roles in Muscle Physiology and Metabolic Regulation

    No full text
    : Skeletal muscle is a key energy-regulating organ, skilled in rapidly boosting the rate of energy production and substrate consumption following increased workload demand. The alteration of skeletal muscle metabolism is directly associated with numerous pathologies and disorders. Thyroid hormones (THs) and their receptors (TRs, namely, TRα and TRβ) exert pleiotropic functions in almost all cells and tissues. Skeletal muscle is a major THs-target tissue and alterations of THs levels have multiple influences on the latter. However, the biological role of THs and TRs in orchestrating metabolic pathways in skeletal muscle has only recently started to be addressed. The purpose of this paper is to investigate the muscle metabolic response to TRs abrogation, by using two different mouse models of global TRα- and TRβKO. In line with the clinical features of resistance to THs syndromes in humans, characterized by THRs gene mutations, both animal models of TRs deficiency exhibit developmental delay and mitochondrial dysfunctions. Moreover, using transcriptomic and metabolomic approaches, we found that the TRs-THs complex regulates the Fatty Acids (FAs)-binding protein GOT2, affecting FAs oxidation and transport in skeletal muscle. In conclusion, these results underline a new metabolic role of THs in governing muscle lipids distribution and metabolism
    corecore